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Converging theories and data suggest that atypical patterns of functional and structural
connectivity are a hallmark neurobiological feature of autism. However, empirical studies
of functional connectivity, or, the correlation of MRI signal between brain regions, have
largely been conducted during task performance and/or focused on group differences within
one network [e.g., the default mode network (DMN)]. This narrow focus on task-based
connectivity and single network analyses precludes investigation of whole-brain intrinsic
network organization in autism. To assess whole-brain network properties in adolescents
with autism, we collected resting-state functional connectivity MRI (rs-fcMRI) data from
neurotypical (NT) adolescents and adolescents with autism spectrum disorder (ASD). We
used graph theory metrics on rs-fcMRI data with 34 regions of interest (i.e., nodes)
that encompass four different functionally defined networks: cingulo-opercular, cerebellar,
fronto-parietal, and DMN (Fair et al., 2009). Contrary to our hypotheses, network analyses
revealed minimal differences between groups with one exception. Betweenness centrality,
which indicates the degree to which a seed (or node) functions as a hub within and between
networks, was greater for participants with autism for the right lateral parietal (RLatP) region
of the DMN. Follow-up seed-based analyses demonstrated greater functional connectivity
in ASD than NT groups between the RLatP seed and another region of the DMN, the
anterior medial prefrontal cortex. Greater connectivity between these regions was related
to lower ADOS (Autism Diagnostic Observation Schedule) scores (i.e., lower impairment) in
autism.These findings do not support current theories of underconnectivity in autism, but,
rather, underscore the need for future studies to systematically examine factors that can
influence patterns of intrinsic connectivity such as autism severity, age, and head motion.
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INTRODUCTION
Atypical patterns of functional and structural connectivity are
proposed to be a hallmark neurobiological feature of autism
(Belmonte et al., 2004; Just et al., 2004; Courchesne and Pierce,
2005; Cherkassky et al., 2006). Most theories and data point
to a pattern of underconnectivity, particularly for long-distance
connections such as interhemispheric or anterior–posterior intra-
hemispheric connections (Belmonte et al., 2004; Just et al., 2004;
Anderson et al., 2011; Dinstein et al., 2011). Some also suggest an
increase in local connections at the expense of long-distance con-
nections (Courchesne and Pierce, 2005; Courchesne et al., 2007;
Rippon et al., 2007). Recent findings, however, offer mixed support
and suggest a more complex picture of connectivity differences
in autism with evidence for both hypo- and hyper-connectivity
for short- and long-distance connections, depending partly on
the specific experimental and analytic methods used and age

of the participants (e.g., Courchesne et al., 2007; Noonan et al.,
2009; Khan et al., 2013; Lynch et al., 2013; review, Müller et al.,
2011).

Structural connectivity findings, indexed by measures of white
matter integrity from diffusion tensor imaging (DTI) (e.g., frac-
tional anisotropy, or FA) or white matter volumes from structural
MRI, reveal atypical connectivity patterns in autism but do not
support general underconnectivity in autism. Rather, findings sug-
gest developmentally increased white matter volume (Courchesne
et al., 2001; Hazlett et al., 2006), particularly radiate white matter
bundles supporting interhemispheric and cortico-cortical connec-
tions (Herbert et al., 2004) and increased FA in infants and young
children with autism (e.g., Ben Bashat et al., 2007; Wolff et al.,
2012), whereas later in development (e.g., adolescents and adults),
FA is decreased (e.g., Barnea-Goraly et al., 2004; Lee et al., 2007;
Nair et al., 2013).
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Studies of functional connectivity, or the correlation in
signal between brain regions, largely have supported the
underconnectivity theory when functional connectivity has been
assessed in the context of a task (review, Müller et al., 2011).
This pattern of reduced long-distance connectivity (e.g., between
regions of different hemispheres or lobes) is seen across domains
of function including tasks involving language processing (e.g.,
Just et al., 2004; Kana et al., 2006), executive function (e.g., Just
et al., 2007), and social processing (e.g., Mason et al., 2008; Kana
et al., 2012; , but see Murphy et al., 2012), but notably these tasks
also resulted in reduced activation in the autism spectrum disor-
der (ASD) group as compared to the neurotypical (NT) group.
Thus, while informative, task-based functional connectivity anal-
yses may reflect differences in performance during a task and may
not reflect differences in intrinsic functional organization of the
brain.

Task-independent studies of the “resting” brain provide a
window with which to examine intrinsic functional network orga-
nization. As first noted by Biswal et al. (1995), even in the absence
of a specific task, fluctuations in brain signal are temporally
correlated within regions that are part of the same functional
network. These large-scale functional networks can be identified
using data-driven ICA (independent component analysis) analy-
ses (e.g., Damoiseaux et al., 2006) or seed-based analyses (e.g., Fox
et al., 2005) and are thought to reflect regions that have a history
of co-activation. Indeed, differences in the organization or con-
nection strength within these regions are related to developmental
changes (e.g., Fair et al., 2009), training (Lewis et al., 2009), and
individual differences, for example in memory (Wang et al., 2010),
math abilities (Emerson and Cantlon, 2012), and face process-
ing (Zhu et al., 2011), suggesting intrinsic network connectivity is
behaviorally relevant.

There has been considerable divergence across studies
in regards to the status of resting-brain functional connectivity in
ASD. Like task-based studies, many studies of the resting brain in
ASD (or those in which the task is used as a regressor of no interest)
have revealed reduced functional connectivity in ASD, particu-
larly for long-range connections (Cherkassky et al., 2006; Kennedy
and Courchesne, 2008; Ebisch et al., 2011; Tsiaras et al., 2011;
Murdaugh et al., 2012; Rudie et al., 2012; Washington et al., 2013).
However, unlike task-based studies, a number of studies report
findings that are inconsistent with a general theory of undercon-
nectivity (e.g., Monk et al., 2009; Müller et al., 2011; Tyszka et al.,
2013), and in some cases hyper-connectivity in ASD groups has
been reported (Mizuno et al., 2006; Turner et al., 2006; Noonan
et al., 2009; Di Martino et al., 2011; Shih et al., 2011; Lynch et al.,
2013).

In sum, extant data suggest a general underconnectivity theory
in autism is likely not the full story. Possibly, the age of the par-
ticipant, the context in which connectivity is assessed (e.g., resting
vs. task), and the specific networks examined may result in differ-
ent findings between groups. Further, recent studies suggest that
head motion may lead to systematic, spurious correlations which
could mimic some of the same patterns of connectivity differences
reported between autism and NT groups (Power et al., 2011). An
incomplete picture of how each of these factors contributes to
functional connectivity in autism still remains. One additional

contributing factor is that most previous studies only focused on
the strength of correlations within a single network rather than
examining network organization with graph theoretical metrics.
Recent advances in graph theory (or complex network) analy-
ses for resting-state functional connectivity MRI (rs-fcMRI) data
allow for characterization of whole-brain intrinsic network orga-
nization (e.g., review, Rubinov and Sporns, 2010; Bullmore and
Bassett, 2011). Specifically, rather than focusing on the strength
of region–region correlations, graph theory methods can exam-
ine the topological properties of each region within the context
of all other regions of interest. For example, graph theory met-
rics can include measures of the integration (global efficiency,
average path length), segregation (local efficiency, clustering coef-
ficient), and centrality (betweenness centrality) of networks. Thus,
these metrics can provide a more robust test of the theory of
reduced long-distance and increased local connectivity by testing
differences in measures of whole-brain network integration and
segregation.

In the current study, we assessed whole-brain network proper-
ties in a group of adolescents with and without autism by using
graph theory and seed-based analyses on rs-fcMRI data with
functionally defined regions of interest. The functional regions
of interest included 34 regions identified from previous meta-
analyses (Dosenbach et al., 2006; Fair et al., 2009) that encompass
four different functionally defined networks: cingulo-opercular
(CO), cerebellar (C), fronto-parietal (FP), and default mode
(DMN; Fair et al., 2009). These networks were chosen because
previous research with these same networks has demonstrated a
developmental pattern of progressive increases in long-distance
connectivity between nodes of the same network and concurrent
decreases in connectivity between anatomically proximal nodes of
distinct networks (Fair et al., 2008, 2009). Furthermore, functions
associated with these networks have all been implicated in autism
(e.g., reviews, Di Martino et al., 2009; Minshew and Keller, 2010).
Thus, examining these networks allows for a more rigorous test of
the hypothesis of reduced long-distance and increased local con-
nectivity in autism, across multiple networks that support varied
functions.

MATERIALS AND METHODS
PARTICIPANTS
All participants gave written, informed consent and parental
consent was obtained for participants under 18 years of age as
approved by the Committee on the Use of Humans as Exper-
imental Subjects (COUHES) at the Massachusetts Institute of
Technology. Participants were compensated monetarily for their
time. Participants were part of a multi-site study involving three
visits for TD adolescents and four for the ASD group but only
the resting-state functional MRI data are presented in the cur-
rent study. Participant IQ was measured using the Kaufman Brief
Intelligence Test (KBIT-2).

AUTISM SPECTRUM DISORDER PARTICIPANTS
We collected resting-state functional MRI data from 22 male ado-
lescents and young adults (14–20 years; mean 17.3 ± 2.2 years;
all male) with a clinical diagnosis of ASD or Asperger’s dis-
order. Diagnosis was confirmed using a combination of the
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Table 1 | Demographic and head motion information for NT and ASD groups and those ASD participants excluded due to excessive head motion.

NT (N = 14) ASD (N = 14) ASD-excluded

(N = 7)

NT vs. ASD

(p-value)

ASD vs. ASD-excluded

(p-value)

Age 17.7(1.8) 17.8(1.9) 15.8(2.5) 0.81 0.05

Full Scale IQ 119(9.6) 116.9(13.7) 98.3(24.4) 0.59 0.04

Verbal IQ 118(13.1) 116.3(15.1) 97(24.9) 0.75 0.04

Non-verbal IQ 115(10.3) 112.5(13.1) 99.7(27.3) 0.57 0.17

Motion outliers 2.2(3.8) 1.8(2.8) 45.9(17.3) 0.73 <0.0001◦

ADOS Combined N/A 9.5(1.3) 16.2(2.8) N/A 0.02

ADOS Comm. N/A 3(2) 4.2(2.3) N/A 0.28

ADOS Social N/A 6.5(2.8) 12(5.1) N/A 0.007

Note: Data are mean (SD). Age is in years. IQ was measured using the Kaufman Brief Intelligence Test-2. ADOS Comm is the communication subscale. p-Value is
based on a t-test comparing groups. ◦This difference is circular because these groups were created based on differences in motion outliers.

Autism Diagnostic Observation Schedule (ADOS) Module 3 or
4 (administered to the participant; Lord et al., 2000) and the
Social Communication Questionnaire (SCQ; completed by the
parent of the participant; Corsello et al., 2007). The SCQ is a
questionnaire designed to screen for autism and all included
ASD participants received an SCQ score greater than the sug-
gested cut-off for ASD of 15 (mean 21.6; 16–28). All partici-
pants reached criteria for Autism or spectrum from the ADOS
except 1 who was subsequently removed from the analyses.
Seven participants were excluded from the analyses because of
excessive movement artifact (see below for description) result-
ing in a final sample of 14 participants with ASD (Table 1).
Information about co-morbid diagnoses and current medica-
tions were obtained through a phone screen with either the
participant or parent if the participant was a minor. This infor-
mation was not available for 2 of the 14 ASD participants.
Six of the 12 participants reported use of medications associ-
ated with symptoms of neuropsychiatric disorders [ADHD (4),
depression/anxiety (3), psychosis (2)]. Only two participants,
however, reported any co-morbid neurological disorders and
these were obsessive–compulsive disorder (1) and attention deficit
hyperactivity disorder (2).

NEUROTYPICAL PARTICIPANTS
Twenty-three NT participants (14–20 years; all male) per-
formed a resting-state scan. Participants were excluded if they
reported any psychiatric or neurological disorders on a self-
report screening questionnaire, which was filled out either by
the participant or the parent. To screen for the presence of
autism or autistic-like traits in the typical population, the
participant’s parents completed the SCQ screening described
above. One participant who was no longer a minor com-
pleted the Autism Spectrum Quotient (AQ; Woodbury-Smith
et al., 2005). No included participants received scores above the
suggested threshold for autism screening. One was excluded
due to excessive movement. Of the 22 remaining participants,
14 were matched as closely as possible to the ASD group on
age. IQ scores did not differ significantly between groups (see
Table 1).

MRI DATA ACQUISITION
Participants came to the Athinoula A. Martinos Imaging Center
at the McGovern Institute for Brain Research at MIT for MRI
data collection on a 3T Siemens Magnetom Tim Trio Scanner.
We collected a structural MPRAGE image (128 sagittal slices,
TE = 3.39 ms, TR = 25 ms, voxel size 1.3 mm × 1 mm × 1.3 mm)
and a resting-state functional MRI scan (67 sagittal slices,
TE = 30 ms, TR = 6000 ms, # of TRs = 64, voxel size = 2.0 mm
isotropic) as part of a 90-min battery of tasks examining social
processing that are not presented here. The last scan of the bat-
tery was the resting-state scan for which we asked participants
to remain still with eyes open and fixated on a cross in the cen-
ter of the screen. We chose a 6 s TR for the resting-state scan in
order to achieve high spatial resolution with whole-brain coverage
because previous work has demonstrated that array coils provide
the biggest increases in temporal signal to noise ratio (tSNR) at
high spatial resolutions (Triantafyllou et al., 2011). While this TR
is unusually long, a study by Van Dijk et al. (2010), showed that
there was no significant difference in the correlation strengths
between the resting-state networks when compared between a TR
of 2.5 and 5 s.

FUNCTIONAL MRI PREPROCESSING
All data were analyzed using SPM81, Nipype (Gorgolewski et al.,
2011), the CONN functional connectivity toolbox ver 13e2

(Whitfield-Gabrieli and Nieto-Castanon, 2012), and in-house
Matlab (The Mathworks, Natick, MA, USA) scripts. All resting-
state volumes were corrected for differences in the timing of slice
acquisition. Functional data were realigned to the mean of all
functional volumes in the timeseries using a 6◦ rigid spatial trans-
formation, which provided the spatial deviation for each timepoint
for translational (x, y, z) and rotational (roll, pitch, yaw) directions
of movement. Functional data were then smoothed with a Gaus-
sian smoothing kernel of 6 mm full-width half maximum, and
normalized into standard Montreal Neurological Institute (MNI)
space using non-linear transformations.

1www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/conn/
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ANALYSES OF HEAD MOTION
The artifact detection toolbox (ART)3 was used to examine outliers
in global signal and movement for each participant. Timepoints
were marked as outliers if global signal exceeded three standard
deviations of the mean or if movement exceeded 1 mm (across
translational and rotational directions) of scan-to-scan deviation.
Participants for whom greater than 20% of the run was marked
as an outlier were removed from the analyses (seven ASD; one
NT). Head motion has been shown to result in spurious pat-
terns of correlations (both increased and decreased; e.g., Power
et al., 2011). Thus to examine whether groups differed as a func-
tion of head motion we used between-group t-tests to test for
differences in (1) the total number of outliers and (2) the sum
across all volumes of the absolute value of the deviation (in
mm) from the reference volume (i.e., the realignment parame-
ters) for each of the six possible motion directions (i.e., x, y, z,
roll, pitch, yaw). Using between group t-tests, we also examined
whether those participants who were excluded from the analyses
due to excessive head motion were systematically different from
those included in terms of age, IQ, or autism severity (Table 1).
No significant differences in head motion between groups were
present for either the number of outliers (see Table 1) or realign-
ment parameters in any of the six directions [x: t(24) = −0.56,
p < 0.58; y: t(24) = −0.58, p < 0.57; z: t(24) = 1.1, p < 0.28;
roll: t(24) = 0.85, p < 0.41; pitch: t(24) = 0.18, p < 0.86, yaw:
t(24) = 1.7, p < 0.11). However, the ASD participants who were
excluded due to excessive head motion had significantly lower Ver-
bal Composite IQ scores, and higher (worse) social impairments
as measured by the ADOS Reciprocal Social Interaction subscale
and autism severity as measured by the Combined ADOS Com-
munication and Reciprocal Social Interaction subscales. Excluded
participants also showed a trend toward significantly younger ages
(Table 1).

FUNCTIONAL CONNECTIVITY ANALYSES
To minimize the effects of head motion, whole-brain voxel-wise
regression analyses were run for each seed region of interest with
the six motion parameters from realignment and their temporal
derivatives and each outlier timepoint entered separately as noise
covariates. Additionally, using the aCompCor method (Behzadi
et al., 2007) to account for physiological noise, covariates were
included with a principal components analysis (PCA)-reduction
(three dimensions) of the signal from white matter and CSF voxels
based on each individual’s unique segmented white matter and
CSF masks. The residual datasets were then temporally filtered
(0.01 < f < 0.08) to focus analyses to the low-frequency oscillations
characteristic of resting-state networks.

Whole-brain regression analyses were computed for each of
the 34 seed regions of interest (Fair et al., 2009; Table 2) on the
preprocessed, “clean” datasets for each participant. These anal-
yses resulted in a correlation value in each voxel for each of
the 34 seed regions. Normalized correlation values were created
by a Fishers r-to-z transform and used in subsequent anal-
yses. Averaging the normalized correlation coefficients within
each group for each region pair created correlation matrices

3http://www.nitrc.org/projects/artifact_detect/

for each of the 34 regions of interest (ROI). Two-way between
group (ASD vs. NT) t-tests were run for each of the 561
ROI–ROI pairs to examine whether differences in connectivity
strength between groups were present and specific to particu-
lar networks. False discovery rate (FDR; q < 0.05) was used
to correct for multiple comparisons for the ROI–ROI compar-
isons.

Graph theory analyses were computed using the CONN func-
tional connectivity toolbox. The unweighted ROI-to-ROI corre-
lation matrices were first thresholded at a cost value of k = 0.15.
Cost is a measure of the proportion of connections for each ROI
in relation to all connections in the network. Rather than deter-
mining a fixed correlation value as a threshold (e.g., r = 0.1), using
a cost threshold allows for roughly the same number of connec-
tions across participants by varying the correlation threshold for
each participant to achieve the fixed cost threshold. When cost is
equated across participants, direct comparisons across groups of
network property differences can be made. Small world properties
are observed in the range of costs 0.05 < k < 0.34, where global
efficiency is greater than that of a lattice graph and local efficiency
is greater than that of a random graph (Achard and Bullmore,
2007). A cost threshold of .15 has also been demonstrated to pro-
vide a high degree of reliability when comparing session-specific
estimates of graph theoretical measures across repeated runs or
sessions (e.g., global efficiency r = 0.95, local efficiency r = 0.9;
Whitfield-Gabrieli and Nieto-Castanon, 2012). We employed both
one- and two-sided cost thresholds. In a one-sided cost thresh-
old only positive correlations are considered, whereas two-sided
includes both positive and negative correlations. To confirm that
our findings generalize beyond these specific parameters, data
were examined at a cost threshold of 0.05, 0.1, 0.2, and 0.25
and compared to the findings with our a priori cost threshold
of 0.15.

The specific measures of interest were those of integration
(global efficiency), segregation (local efficiency), and central-
ity (betweenness centrality). Between-group t-tests were used to
compare network measures between groups with a FDR correc-
tion of q < 0.05. Global efficiency is calculated as the average
of the inverse of the shortest path length between each ROI (or
node) and all other ROIs. The shortest path length is defined as
the fewest number of connections (or correlations) between two
nodes. Thus, a network with high global efficiency would be one
in which nodes are highly integrated so the path between nodes
is consistently short. With cost kept constant, this measure can be
thought of as reflecting global, long-distance connections within
the brain. Local efficiency is calculated as the average inverse of
the shortest path length between the neighbors of any given node
(or ROI). In other words, local efficiency measures the extent to
which nodes are part of a cluster of locally, interconnected nodes.
Finally, we examined a measure of centrality, betweenness cen-
trality, which measures the fraction of all shortest path lengths
in a network that pass through a given node. Thus, if a node is
directly connected to many other nodes in the network it will have
a shorter overall path length and function as a hub within and
between networks. For more details on graph theoretical mea-
sures see Bullmore and Bassett (2011) or Rubinov and Sporns
(2010).
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Table 2 | Seed regions of interest.

Number Network Hemi Region X V Z

1 Cingulo-opercular L Anterior prefrontal cortex anterior insula/frontal −28 51 15

2 Cingulo-opercular L Operculum −35 14 5

3 Cingulo-opercular L Anterior thalamus dorsal anterior cingulate/medial superior −12 −15 7

4 Cingulo-opercular L Frontal cortex −1 10 46

5 Cingulo-opercular R Anterior prefrontal cortex anterior insula/frontal 27 50 23

6 Cingulo-opercular R Operculum 36 16 4

7 Cingulo-opercular R Anterior thalamus 10 −15 8

8 Cerebellar L Inferior cerebellum −19 −78 −33

9 Cerebellar L Lateral cerebellum −32 −66 −29

10 Cerebellar R Inferior cerebellum 18 −80 −33

11 Cerebellar R Lateral cerebellum 31 −61 −29

12 Default L Inferior temporal −61 −33 −15

13 Default L Lateral parietal −47 −67 36

14 Default L Parahippocampal gyrus −22 −26 −16

IS Default L Superior fronta −14 38 52

16 Default R Inferior temporal 65 −17 −15

17 Default R Lateral parietal 53 −67 36

18 Default R Parahippocampal gyrus 25 −26 −14

19 Default R Superior frontaanterior medial prefrontal 17 37 52

20 Default R Cortex 1 54 21

21 Default L Posterior cingulate cortex −2 −36 37

22 Default R Retrosplenial cortex ventromedial prefrontal 3 −51 8

23 Default L Cortex −3 39 −2

24 Fronto-parietal L Inferior parietal lobe −51 −51 36

25 Fronto-parietal L Intraparietal sulcus −31 −59 42

26 Fronto-parietal L Dorsolateral prefrontal cortex −43 22 34

27 Fronto-parietal L Frontal −41 3 36

28 Fronto-parietal L Precuneus −9 −72 37

29 Fronto-parietal R Inferior parietal lobe 51 −47 42

30 Fronto-parietal R Intraparietal sulcus 30 −61 39

31 Fronto-parietal R Dorsolateral prefrontal cortex 43 22 34

32 Fronto-parietal R Frontal 41 3 36

33 Fronto-parietal R Precuneus 10 −69 39

34 Fronto-parietal LR Mid cingulate cortex 0 −29 30

These regions of interest and coordinates are taken directly from Fair et al. (2009). Number corresponds to the number listed in Figure 1.

RESULTS
LARGELY TYPICAL NETWORK ORGANIZATION IN ASD
Comparison of normalized correlation matrices between groups
revealed minimal differences, which do not survive correction for
multiple comparisons. Similarly network analyses revealed largely
typical patterns of connectivity in the ASD group as compared to
the NT group. Contrary to our hypotheses we found no differ-
ences in measures of global or local efficiency. Only betweenness
centrality, which indicates the degree to which a seed (or node)
functions as a hub within and between networks, was significantly

different between groups and it was greater for participants with
autism for the right lateral parietal (RLatP) seed of the DMN
(t(26) = 3.52; p < 0.027 FDR-corrected) only. This metric was only
significantly different when both positive and negative correlations
were used in the cost threshold. When only positive correla-
tions were considered, greater betweenness centrality in RLatP
remained larger in ASD than NT groups but not significantly
(t(26) = 1.57, p < 0.13). This finding suggests both correlations
and anti-correlations (i.e., negative correlations) drove differ-
ences between groups. This effect held when examining higher
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cost thresholds (k = 0.2 and 0.25) but not lower (k = 0.1 and
0.05).

EXPLORATION OF RIGHT LATERAL PARIETAL SEED CONNECTIVITY
PATTERNS
Comparison of the 34 × 34 matrix of normalized correlation
values between seed regions for each group suggests the higher
betweenness centrality in ASD may be due to (1) greater long-
distance connectivity within the default mode network [RLatP–
anterior medial prefrontal cortex (aMPFC)] and (2) greater neg-
ative correlations with regions in cerebellar and control networks
in participants with ASD (Figure 1). However, these ROI-to-
ROI differences were not significant when controlling for multiple
comparisons. To further investigate how differences in connec-
tivity resulted in the difference in centrality between groups we
conducted within- and between-group t-tests on correlation maps

using the RLatP region as a seed region (Figure 2, Table 3). These
maps demonstrate significantly greater functional connectivity in
the ASD than NT group within medial prefrontal cortex using
a FWE cluster correction of p < 0.05. The NT group showed
higher connectivity between the RLatP seed and cerebellar ton-
sils [a region previously associated with the default mode network
(Fox et al., 2005)]. Examination of correlation maps within each
group suggests these regions of between-group differences are not
driven only by negative correlations in one group.

Our findings of greater connectivity within long-distance
regions of the default mode network and greater centrality in
autism were surprising and thus we explored whether variance
in RLatP connectivity was related to autism severity, as measured
by the ADOS, IQ, or age. No significant relationships were seen for
autism severity or IQ and betweenness centrality measures for the
RLatP, although there was a trend toward reduced centrality with

FIGURE 1 | Correlation matrices for neurotypical (A) and ASD (B) groups.
Normalized correlation coefficients are reported for each of the 34 × 34 ROI
correlations by group. These are organized by network based on Fair et al.
(2009) (CO, cingulo-opercular; C, cerebellar; DMN, default mode network; FP,
fronto-parietal). Each row is labeled with a number which corresponds to 1 of

34 seed regions (seeTable 2 for a list by number). Comparison of these
matrices resulted in no significant differences between groups, when
corrected for multiple comparisons. The right lateral parietal seed region (#17)
of the DMN is identified with an arrow because that region showed a
significant effect of group on centrality measures.

FIGURE 2 | Whole-brain functional connectivity maps with the right

lateral parietal (RLatP) region (green) as a seed region are shown for the

ASD group (A) and neurotypical group (B). Between-group comparisons
(C) revealed one region of significantly greater connectivity from the RLatP

seed in the ASD than NT group (yellow) which was the medial prefrontal
cortex. The NT group showed greater connectivity between the RLatP seed
and regions within the cerebellum (blue) than the ASD group. All maps are
thresholded at p < 0.001, FWE cluster corrected at p < 0.05.
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Table 3 | Functional connectivity from the right lateral parietal seed region.

Group region Hemi X y z T k

Neurotvpical

Lateral parietal lobe R 50 −70 36 21.28 2818

Posterior cingulate L −2 −34 46 7.76 2091

Lateral parietal lobe L –38 −74 40 8.74 1321

Parahippocampal gyms L –12 −36 −16 6.54 319

Superior temporal sulcus R –46 −32 −6 5.77 293

Superior frontal gyrus L –38 54 22 5.46 225

Middle frontal gyrus R 26 32 40 6.87 210

Posterior insula R 38 −28 16 6.06 196

anterior superior temporal sulcus L –50 10 −34 5.78 85

Superior frontal gyrus R 28 66 10 6.06 81

Cerebellar tonsils R 10 −40 −38 6.03 75

Parahippocampal gyrus R 26 −30 −14 6.08 72

Brainstem/pons R 2 −28 −26 8.06 65

Autism spectrum disorder

Superior frontal gyrus R 38 14 50 11.65 7006

Lateral parietal lobe R 50 −62 22 18.56 3246

Lateral parietal lobe L –42 −74 38 11.95 1867

Posterior cingulate R 12 −26 34 9.23 1710

Superior temporal sulcus L –54 −40 −4 10.29 552

Superior temporal sulcus R 46 −36 −6 6.65 263

Superior frontal gyrus L 40 58 0 8.41 211

Neurotvpical > autism spectrum disorder

Cerebellum L –24 −40 −50 5.09 127

Cerebellar tonsils R 8 −42 −38 5.65 123

Autism spectrum disorder > neurotypical

Anterior medial prefrontal cortex R 6 46 30 4.26 151

Regions were identified using p < 0.001, and FWE-cluster-correction of p < 0.05. Coordinates are given in MNI space. T-values from the peak voxel of the cluster and
size (k) of the cluster are given. Clusters are organized by size.

age in the ASD group only [r(13) = −0.48, p < 0.086). Because the
aMPFC was a region that showed significantly increased connec-
tivity with RLatP in ASD in whole-brain analyses, we examined
whether the strength of connectivity between the RLatP seed and
the aMPFC seed was correlated with ADOS scores, IQ, or age.
We found a negative correlation between the ADOS combined
social-communication subscale and RLatP to aMPFC connectivity
[r(13) = −0.56, p < 0.046), which was driven by the commu-
nication subscale [r(13) = −0.67, p < 0.012), suggesting lower
connectivity within long-distance regions of the default mode
network is related to more severe autism (Figure 3). No other
correlations reached significance.

DISCUSSION
Overall, these data are consistent with recent studies suggesting
largely typical patterns of functional connectivity in individuals
with autism (Tyszka et al., 2013). Although network organization
across four functional networks was examined, this relatively

high-functioning group of adolescent males demonstrated only
one significant difference in graph theoretical metrics of network
organization: namely, betweenness centrality of the RLatP region
of the DMN. Follow-up whole-brain voxel-wise analyses with the
RLatP region as a seed region revealed greater connectivity in ASD
to another region of the DMN, the aMPFC, as compared to NT
controls.

Of the four functional networks examined in the current study,
the DMN is the most consistently implicated in autism – though
that may be largely due to a bias in the number of studies inves-
tigating this network alone. The DMN comprises a set of regions
showing deactivation during goal-directed tasks, higher metabolic
activity during rest, and relative activation during tasks requir-
ing internally directed thought or social processing (e.g., Gusnard
and Raichle, 2001). In autism, however, these regions do not
show the typical pattern of deactivation during goal-directed
tasks (Kennedy et al., 2006; Murdaugh et al., 2012) and show
reduced activation during tasks of social-cognitive processing (e.g.,
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FIGURE 3 | Functional connectivity between the right lateral parietal

and anterior medial prefrontal cortex regions in the default mode

network is negatively correlated with ADOS communication scores in

the ASD group. Higher scores indicate greater impairment.

Gilbert et al., 2009; Murdaugh et al., 2012, but see Dufour et al.,
in press). Furthermore, many previous studies have found a pat-
tern of reduced DMN functional connectivity in ASD, particularly
between long-distance frontal and parietal regions (Kennedy and
Courchesne, 2008; Monk et al., 2009; Assaf et al., 2010; Weng et al.,
2011; Murdaugh et al., 2012; Rudie et al., 2012; von dem Hagen
et al., 2013, but see Lynch et al., 2013). Thus, while findings of
atypical engagement of the DMN in autism is not new, the finding
of greater functional connectivity between RLatP and medial pre-
frontal regions of the default mode network in ASD is inconsistent
with many previous studies.

There are (at least) two factors that may account for differ-
ences between our study and previous studies finding reduced
connectivity between groups. First, we matched groups on
head motion parameters and used two measures to account for
uncorrected head motion in subsequent analyses. While some
previous studies demonstrated no significant differences in head
motion between groups, four of the seven studies that showed
reduced functional connectivity in the DMN did not compare
head motion across groups. Differences in head motion between
groups is a critical factor as previous studies have suggested that
head motion may account for systematic and spurious correla-
tions, particularly in reducing long-distance correlations while
increasing short-distance correlations (Power et al., 2011). It
remains unclear if “accounting” for head motion in the analysis
is sufficient to eliminate group differences that may be due to
motion.

Second, our final sample consisted of quite high-functioning
individuals with autism. Many previous studies reporting reduced
functional connectivity had, on average, slightly higher ADOS
scores and lower IQs. Further, within the current study a
significant relationship was found between functional con-
nectivity between RLatP and MPFC and ADOS combined
social-communication (and communication) scores, with greater
impairment relating to lower functional connectivity. Taken
together, these findings suggest lower-functioning autism may
result in patterns of reduced connectivity. However, we offer
caution in this interpretation because this relationship is counter-
intuitive in the context of the current study. The ASD group
had significantly greater connectivity than the NT group, which

suggests that more severe autism should be related to greater
connectivity, but instead the reverse is true. These data suggest a
possible non-linear relationship between autism severity and func-
tional connectivity in autism but this has yet to be systematically
examined.

Systematically examining how level of functioning impacts
connectivity patterns is especially challenging because lower-
functioning individuals tend to have more motion artifact, and, as
discussed above, head motion differences alone can lead to a pat-
tern of reduced long-distance connectivity. In the current study,
we used stringent criteria to exclude participants with excessive
head motion and while this only resulted in loss of data from one
NT participant, seven participants with ASD were removed from
data analyses. These seven were significantly different from the rest
of the ASD group not only because they moved more during the
scan but also because they were younger, had higher ADOS scores
(i.e., were more impaired), and had lower verbal and composite
IQ scores. Thus, a significant, but necessary, challenge for further
research is to characterize the functional significance of resting-
state networks when head motion is equated across groups (Deen
and Pelphrey, 2012), such as in the current study.

Although less common, this is not the first study to report
hyper-connectivity within the default mode network in autism.
Two previous studies also reported increased connectivity in ASD
within default mode regions (Monk et al., 2009; Lynch et al., 2013),
and for one (Lynch et al., 2013) this increased connectivity was
found between frontal and parietal DMN regions similar to the
current study. Specifically, Lynch et al. (2013) examined func-
tional connectivity from regions within posteromedial cortex in
7–12-year-old children and reported greater connectivity in ASD
from retrosplenial cortex, a region just inferior to the poste-
rior cingulate and part of the default mode network, to several
other regions including the aMPFC (though this particular con-
nection was reduced in the ASD sample in Monk et al., 2009).
Additionally, connectivity between posterior cingulate and several
lateral and medial temporal regions showed greater connectivity
in the ASD than NT groups – a finding similar to Monk et al.
(2009).

The study of Lynch et al. (2013) was among the first to exam-
ine DMN connectivity during a resting baseline in young children
with ASD. As such, they suggested the relatively novel finding of
hyper-connectivity within the default mode network (and from
posteromedial cortex to regions outside of the DMN) may be
due to a developmental change in the pattern of connectivity
differences between ASD and NT groups. This developmental
story is consistent with other theories of connectivity in autism
(e.g., Courchesne and Pierce, 2005; Pelphrey et al., 2011) as well
as evidence of age-related changes in brain differences between
autism and control groups (Redcay and Courchesne, 2005). In
other words, whereas findings from older children and adults
reveal reduced brain size, reduced measures of white matter
integrity (e.g., FA) or reduced functional connectivity, findings
from younger children reveal larger brain size (e.g., Courchesne
et al., 2001; Hazlett et al., 2006), higher FA values (Wolff et al.,
2012), and increased functional connectivity (Lynch et al., 2013).
However, the current findings of DMN hyper-connectivity was in
a sample of adolescents and the Monk et al. (2009) study was in
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adults. Thus, age-related differences may not completely account
for patterns of increased functional connectivity within the default
mode network.

While further research is needed to disentangle the factors con-
tributing to relatively typical or increased connectivity in autism,
we find the increased connectivity between the RLatP and aMPFC
regions of the DMN in the current study intriguing. These regions
play an important role in social processes that are atypical in indi-
viduals with autism, including mental state judgments of others
(i.e., theory of mind) and of one’s self (i.e., introspection) (e.g.,
Baron-Cohen et al., 1985; Frith and Happe, 1999; Saxe and Kan-
wisher, 2003; Saxe et al., 2006; Senju et al., 2009). While the medial
prefrontal cortex plays a general role in mentalizing (Whitfield-
Gabrieli et al., 2011), portions of RLatP cortex may play a more
specific role in thinking about others thoughts and beliefs, or the-
ory of mind (e.g., Saxe and Kanwisher, 2003; Saxe et al., 2006).
Meta-analyses suggest the RLatP region of the default mode is at
least partially overlapping with the right temporoparietal junction
(RTPJ) often reported in studies of theory of mind processing
(e.g., Schilbach et al., 2008; Spreng and Mar, 2012). Beyond social-
cognitive processing, the RLatP lobe is also associated with shifts of
spatial attention (Corbetta and Shulman, 2002), semantic process-
ing (Binder et al., 1999), and narrative comprehension (e.g., Mar,
2011), all of which have been implicated as atypical in individuals
with autism. Thus, greater connectivity within right parietal cortex
could indicate less functional specialization of this region in ASD,
similar to findings of right posterior temporal cortex (e.g., Shih
et al., 2011). However, the current data do not directly address that
hypothesis.

A notable limitation in this study, which claims minimal differ-
ences in functional connectivity between groups, is a small sample
size. Nonetheless, the current findings of greater connectivity

within the DMN in ASD adds to the small, growing body of
literature suggesting inconsistent support for an underconnectiv-
ity theory of autism. A second limitation is the restricted range
of high-functioning participants with autism who were able to
complete the scan with minimal motion artifact. Even within
this narrow range, a correlation was seen between a greater level
of communicative impairment and lower functional connectiv-
ity between RLatP and medial prefrontal cortex and a trend
toward increasing age and reduced betweenness centrality in ASD.
Finally, a third limitation is the inclusion of data from partici-
pants currently on medication as some medications may affect the
strength or patterns or brain activation; however, the sample is
too small to determine whether medication had any systematic
effects on functional connectivity. These data underscore the need
for developmental studies of functional connectivity in high- and
low-functioning individuals with autism in which head motion is
tightly matched between groups.
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